
Joe FitzPatrick
Breakpoint 2014

Stupid PCIe Tricks

● Electrical Engineering education with
focus on CS and Infosec

● 8 years doing security research, speed
debug, and tool development for CPUs

● Hardware Pen Testing of CPUs
● Security training for functional validators

worldwide
● Software Exploitation via Hardware

Exploits, AKA SExViaHEx

whoami

Joe FitzPatrick
@securelyfitz

joefitz@securinghardware.com

If Joe Fitz...

Joe Sitz

This is not academic-caliber research.

Lots of this stuff has been done before.

The difference is that I aim to show that PCIe attacks can
be easier and cheaper than previously thought

Disclaimer

What is PCIe?

PCIe is PCI!

PCIe is NOT PCI!

Foto tomada por Jorge González http://es.wikipedia.org

Photo by snikerdo http://en.wikipedia.org

Links and Lanes

Diagram: PCIe 2.1 specification

Hierarchy

Diagram: PCIe 2.1 specification

Switching and Routing

Diagram: PCIe 2.1 specification

Layers

Diagram: PCIe 2.1 specification

Configuration Space

Diagram: PCIe 2.1 specification

Configuration Space

Diagram: PCIe 2.1 specification

Configuration Space

Diagram: PCIe 2.1 specification

Configuration Space

Diagram: PCIe 2.1 specification

Configuration Space

Diagram: PCIe 2.1 specification

Enumeration

Diagram: PCIe 2.1 specification

Routing PCIe

The Step-By-Step, Complicated,
Mandatory, Inflexible Rules of
Routing PCIe:

1. route pairs adjacent and equal length

The Step-By-Step, Complicated,
Mandatory, Inflexible Rules of
Routing PCIe:

1. route pairs adjacent and equal length

… that’s mostly it

The Step-By-Step, Complicated,
Mandatory, Inflexible Rules of
Routing PCIe:

Routing PCIe
System Board Traces 12 Inches

Add-in Card Traces 3.5 inches

Chip-to-Chip Routes 15 inches

Follow these rules and your board might work.
Break them and it might not.

Routing PCIe

Minimum PCIe:
● 2.5GHz TX
● 2.5GHz RX
● 100MHz Clock (optional)

$

$

$

$$

Routing PCIe

Cross-section of a USB 3.0 cable. Image courtesy of USB Implementers Forum

PEXternalizer
on github

PEXternalizer
on github

PEXternalizer
on github

PEXternalizer
on github

mPEXternalizer
on github

POC || GTFO
0x05

POC || GTFO
0x05

POC || GTFO
0x05

A brief history of DMA attacks

Tribble

Firewire Attacks

Video Demo

Slides
SysCan ‘14

PLX Technologies Buy one

Thunderbolt

Thunderbolt

USB3380 Firmware

USB3380 Firmware

> xxd SLOTSCREAMER.bin
0000000: 5a00 0c00 2310 4970 0000 0000 e414 bc16 Z...#.Ip........

USB3380 Firmware

> xxd SLOTSCREAMER.bin
0000000: 5a00 0c00 2310 4970 0000 0000 e414 bc16 Z...#.Ip........

USB3380 Firmware

> xxd SLOTSCREAMER.bin
0000000: 5a00 0c00 2310 4970 0000 0000 e414 bc16 Z...#.Ip........

That’s all!

Hardware

http://www.hwtools.net/PLX.html

Software

tools used in
preparing this
presentation:
● plx’s flashing

software
● pyusb + scripts
● inception_pci
● volatility for

memory analysis

Attack-side Software

Quick ‘n’ dirty
PCIe memory
read/write with
PyUSB

More attack-side Software

More attack-side Software
EQUALS:
#
|-- Offset 0x00
/
/\ |-patchoffset--------------->[b0 01]
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f .. (byte offset)

c6 0f 85 a0 b8 00 00 b8 ab 05 03 ff ef 01 00 00 .. (chunk of memory data)

______/ ___/ ______/
\ \ \
\ \ |-- Chunk 2 at internaloffset 0x05
\ |-- Some data (ignore, don't match this)
|-- Chunk 1 at internaloffset 0x00
_____________________/
\
|-- Entire signature
#

More attack-side Software
 {'OS': 'Mac OS X 10.9',
 'versions': ['10.9'],
 'architectures': ['x64'],
 'name': 'DirectoryService/OpenDirectory unlock/privilege escalation',
 'notes': 'Overwrites the DoShadowHashAuth/ODRecordVerifyPassword return value.
 'signatures': [{'offsets': [0x1e5], # 10.9
 'chunks': [{'chunk': 0x4488e84883c4685b415c415d415e415f5d,
 'internaloffset': 0x00,
 'patch': 0x90b001, # nop; mov al,1;
 'patchoffset': 0x00}]}]}]

Attacking via PCIe

MRd

Find important values at known locations

Take memory dumps for later analysis

Example:
Dump memory and use Volatility to analyze it

Dump Analysis with Volatility

dmesg log of the attack recovered from the
memory dump of the victim

Dump Analysis with Volatility

names, pids, and uids
for dumped processes

Dump Analysis with Volatility

extracted machine
info

the perfect amount of
memory to dump!

MWr

Modify values at known locations

Manipulate code!!!

Example: Use Inception to modify lock screen
checking, or drop a metasploit payload!

Inception with Metasploit (W7sp1 POC only)

IORd/IOWr

Only for legacy devices

(legacy means not thoroughly tested recently)

CfgRd/CfgWr

Interact with other PCI devices’ config spaces

Yet another separate address space/different
means of accessing hardware

Msg/MsgD

Messages send things like interrupts and vendor-
defined configuration

Many message types are very rarely used

Example: Invisible Things Labs SNB VT-D

Mitigations

Bus Master Enable
joefitz@linUX31a:~/Documents/pcie/SLOTSCREAMER/inception_pci$ lspci -vv | grep BusMaster

Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
Control: I/O+ Mem+ BusMaster- SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx-
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+

Access Control Services

IOMMU

Mitigating the Mitigations

● Identifies device to the OS
● OS chooses which driver to load
● OS configures ACS, BME, etc…
● OS loads driver

VID:PID

Default Drivers

● Some drivers are ‘class’ drivers (think USB
MSC, etc...)

● Some device specific drivers might be
installed by default (OSX)

● Drivers contain bugs
● Think facedancer for PCIE or Thunderbolt

Early Boot

● IOMMU is not configured yet
● Neither is much else
● Wishlist: Volatility support for EFI shell

Option ROM/EFI drivers

● Some devices have firmware that gets run at
early boot

● Some systems block this (but usually for
anti-competitive reasons, not security)

●

Breaking the rules

● Spoof requesterID for posted transactions
● Well-timed spoofed requesterID for non-

posted transactions
● Setting the ‘translated request’ bit

Misconfigurations

● Everything is MMIO now - memory
protections are essential

● Memory protections are not enough - need
Cfg and IO protections as well - don’t forget
about them

● Does installing a hypervisor change how
your OS uses its IOMMU?

Putting it all together

Thunderbolt

Diagram: Apple Thunderbolt Device Driver Programming Guide

HALIBUTDUGOUT

Sorry, Previous Speakers

ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

Building ALLOYVIPER

MITMing

⇐ Thanks for the slides, snare & rzn

⇐ Thanks for the slides, snare & rzn

Bypassing VT-d on Macbooks?
● VT-d is off at boot/reboot
● Broadcom Ethernet drivers crash the system
● System reboots - all the doors are open for a

few moments

No POC yet (I’ll GTFO soon…)

Can we do it without imitating a
device?

● Some PCIe switches have ‘transparent’
mode

● Some PCIe switches have TLP injection
debug features

● Can we build one into a genuine device?
● Can we build one into a cable?
No POC yet here either

Potential enhancements

● 64-bit DMA (>4gb access!)
● Full control over TLP Header

○ spoofing requester ID
○ testing ‘reserved’ bits

Enough unproven concepts… time to GTFO...

Joe FitzPatrick
@securelyfitz

joefitz@securinghardware.com
http://www.securinghardware.com

Questions?

